Local martingale

Results: 33



#Item
11Semimartingale / Connection / Adapted process / Martingale / Local martingale / Symbol / Hitting time / Statistics / Stochastic processes / Martingale theory

Nonlinear Lévy Processes and their Characteristics Ariel Neufeld∗ Marcel Nutz† January 11, 2015

Add to Reading List

Source URL: www.math.columbia.edu

Language: English - Date: 2015-01-11 14:10:20
12Mathematical finance / Financial risk / Martingale / Local martingale / Itō calculus / Wiener process / Random variable / Superhedging price / Stopping time / Statistics / Stochastic processes / Martingale theory

Superhedging and Dynamic Risk Measures under Volatility Uncertainty Marcel Nutz ∗

Add to Reading List

Source URL: www.math.columbia.edu

Language: English - Date: 2012-06-19 13:31:57
13Mathematics / Constructible universe / Envelope / Partial differential equation / Local martingale / Stochastic differential equation / Itō diffusion / Heat equation / Statistics / Differential equations / Mathematical analysis

Stochastic Target Games and Dynamic Programming via Regularized Viscosity Solutions∗ Bruno Bouchard† Marcel Nutz‡

Add to Reading List

Source URL: www.math.columbia.edu

Language: English - Date: 2015-02-12 17:31:06
14Martingale theory / Stochastic processes / Stochastic calculus / Mathematical finance / Integral calculus / Malliavin calculus / Martingale / Doléans-Dade exponential / Lévy process / Statistics / Probability theory / Mathematical analysis

Institute for Economic Studies, Keio University Keio-IES Discussion Paper Series Local risk-minimization for Barndorff-Nielsen and Shephard models Takuji Arai Ryoichi Suzuki

Add to Reading List

Source URL: ies.keio.ac.jp

Language: English - Date: 2015-04-17 06:41:32
15Martingale / Brownian motion / Quadratic variation / Feynman–Kac formula / Stopping time / Risk-neutral measure / Local martingale / Wiener process / Itō diffusion / Statistics / Stochastic processes / Black–Scholes

Stochastic Calculus and Financial Applications Final Take Home Exam (Steele: Fall[removed]Instructions. You may consult any books or articles that you find useful. If you use a result that is not from our text, attach a co

Add to Reading List

Source URL: www-stat.wharton.upenn.edu

Language: English - Date: 2013-12-11 16:06:34
16Martingale theory / Itō calculus / Semimartingale / Quadratic variation / Martingale representation theorem / Girsanov theorem / Martingale / Local martingale / Brownian motion / Statistics / Stochastic processes / Probability theory

Basic Facts about Brownian Motion, Stochastic Integration and Stochastic Differential Equations M.Yor(1),(2) July 5, [removed])

Add to Reading List

Source URL: www.math.upatras.gr

Language: English - Date: 2005-07-09 12:18:50
17Financial economics / Probability theory / Options / Girsanov theorem / Black–Scholes / Stochastic volatility / Martingale / Yonsei University / Local volatility / Statistics / Stochastic processes / Mathematical finance

A Delay Financial Model with Stochastic Volatility; Martingale Method Jeong-Hoon Kim1 and Min-Ku Lee2 1,2 Department of Mathematics, Yonsei University, Seoul[removed], Korea

Add to Reading List

Source URL: www.fields.utoronto.ca

Language: English - Date: 2010-06-20 11:46:30
18Mathematical finance / Brownian motion / Colloidal chemistry / Variance swap / Martingale / Local martingale / Stopping time / Economic model / Statistics / Stochastic processes / Martingale theory

Robust Pricing and Hedging of Options on Variance

Add to Reading List

Source URL: www.fields.utoronto.ca

Language: English - Date: 2010-06-26 11:24:02
19Martingale / Local martingale / Doob–Meyer decomposition theorem / Statistics / Martingale theory / Probability theory

Processes of Class (Σ), Last Passage Times and Drawdowns Patrick Cheridito ORFE, Princeton University

Add to Reading List

Source URL: www.fields.utoronto.ca

Language: English - Date: 2010-06-26 13:13:12
20Volatility / Law / Martingale / Statistics / Stochastic processes / Local volatility

Overprized options on variance swaps in local vol models Mathias Beiglb¨ock, joint with Peter Friz and Stephan Sturm Universit¨ at Wien June 2010

Add to Reading List

Source URL: www.fields.utoronto.ca

Language: English - Date: 2010-06-17 12:19:04
UPDATE